超音波探傷試験Ⅲ 2017 年第 2 版 正誤表 (Rev.6)

2024年3月18日

頁	章	行	誤	正
53	4.2.1	左上 20 行目	このときのエコーの形は図4.10(b)になる。すなわち, (b)は(a)と位相が反転している。例えば,高分解能垂直 探触子をアクリル樹脂の板に直接接触させた場合につ いて考える。アクリル樹脂板の底面エコーが図4.10(a) の形であったとする。アクリル樹脂板の下に厚鋼板を 接触媒質を介して接触させたとする。鋼の音響インピ ーダンスは、アクリル樹脂の音響インピーダンスより 大きいからアクリル樹脂の底面エコー(アクリル樹脂 と鋼の境界面エコー)は、鋼板がないときと比べて位 相が反転して図4.10(b)となる。もし、アクリル樹脂板 と鋼板との間に空隙があれば、位相の反転は起きな い。この現象は接合の良否の評価に役立つ場合が多 い。	例えば、高分解能垂直探触子をアクリル樹脂の板に直接接触させた場合について考える。アクリル樹脂板の底面エコ ー(Z ₂ <z<sub>1)が図 4.10(a)の形であったとする。ここで、アクリ ル樹脂板の裏に鋼を密着させた場合、アクリル樹脂の音 響インピ-ダンスは鋼の音響インピ-ダンスより小さいの で、Z₂>Z₁となる。したがって、アクリル樹脂と鋼の境界 面エコーは鋼板がないときと比べて位相が反転して図 4.10(b)となる。もし、アクリル樹脂板と鋼板との間に空隙が あれば、位相の反転は起きない。この現象は接合の良否の評 価に役立つ場合が多い。</z<sub>
53	4.2.1	図 4.10	(a) 入射波 (b) 反射波 図4.10 反射波の位相反転	(a) Z2 <z1< td=""> (b) Z2>Z1 図4.10 反射波の位相反転</z1<>

頁	章	行	誤	正
54	4.2.1	左上5行目	入射波のエネルギ E _i は式(4.13)で与えられる。 $E_r = \frac{P_r^2}{Z_2} = \frac{P_r^2 r_{12}^2}{Z_2} = E_i \left[\frac{Z_2 - Z_1}{Z_1 + Z_2} \right]^2 $ (4.13)	入射波のエネルギ E _i は式(4.12')で与えられる。(次に下式を 追加する。) $E_i = P_i^2/Z_1$ (4.12') また、反射波のエネルギ Er は式(4.13)で与えられる。 $E_r = \frac{P_r^2}{Z_1} = \frac{P_r^2 r_{12}^2}{Z_1} = E_i \left[\frac{Z_2 - Z_1}{Z_1 + Z_2}\right]^2$ (4.13)
54	4.2.1	式(4.14)	$E_{t} = E_{i} - E_{r} = \frac{P_{i}^{2}}{Z_{1}} - \frac{P_{i}^{2} - r_{12}^{2}}{Z_{1}} = \frac{P_{i}^{2}}{Z_{1}} (1 - r_{12}^{2})$ $= \frac{P_{i}^{2} r_{12}^{2}}{Z_{1}} \left[1 - \left\{ \frac{Z_{2} - Z_{1}}{Z_{1} + Z_{2}} \right\} \right]$ $= \frac{P_{i}^{2}}{Z_{1}} \times \frac{P_{i}^{2} Z_{i}^{2} + 2Z_{1} Z_{2} + Z_{2}^{2} - (Z_{2}^{2} - 2Z_{1} Z_{2} + Z_{1}^{2})}{(Z_{1} + Z_{2})^{2}}$ $= \frac{P_{i}^{2}}{Z_{1}} \times \frac{4Z_{1} Z_{2}}{(Z_{1} + Z_{2})^{2}} = \frac{P_{i}^{2}}{Z_{1}} \left[\frac{2Z_{1}}{Z_{1} + Z_{2}} \right]^{2} = \frac{P_{i}^{2}}{Z_{1}} = E_{t} (4.14)$	$E_{t} = E_{i} - E_{r} = \frac{P_{i}^{2}}{Z_{1}} - \frac{P_{i}^{2} - r_{12}^{2}}{Z_{1}} = \frac{P_{i}^{2}}{Z_{1}} (1 - r_{12}^{2})$ $= \frac{P_{i}^{2} r_{12}^{2}}{Z_{1}} \left[1 - \left\{ \frac{Z_{2} - Z_{1}}{Z_{1} + Z_{2}} \right\}^{2} \right]$ $= \frac{P_{i}^{2}}{Z_{1}} \times \frac{Z_{1}^{2} + 2Z_{1}Z_{2} + Z_{2}^{2} - (Z_{2}^{2} - 2Z_{1}Z_{2} + Z_{1}^{2})}{(Z_{1} + Z_{2})^{2}}$ $= \frac{P_{i}^{2}}{Z_{1}} \times \frac{4Z_{1}Z_{2}}{(Z_{1} + Z_{2})^{2}} = \frac{P_{i}^{2}}{Z_{2}} \left[\frac{2Z_{2}}{Z_{1} + Z_{2}} \right]^{2} = \frac{P_{i}^{2}}{Z_{2}} = E_{t} \qquad (4.14)$
54	4.2.1	式(4.15)	$\boldsymbol{E_1} = \boldsymbol{E_r} + \boldsymbol{E_t} \tag{4.15}$	$\boldsymbol{E_i} = \boldsymbol{E_r} + \boldsymbol{E_t} \tag{4.15}$
54	4.2.1	右上5行目	音圧通過率 t ₁₀ は式(4.17)で与えられる。	音圧通過率 t21 は式(4.17)で与えられる。
54	4.2.2	右下 17 行目	透過率	通過率
55	4.2.2	式(4.24)	式(4.20)を,式(4.19),式(4.21),式(4.22),式(4.23)を使 って書き換えると $\frac{P_i}{Z_1} cos \theta_i - \frac{P_r}{Z_r} cos \theta_r = \frac{P_t}{Z_2} cos \theta_t = \frac{P_t + P_r}{Z_2} cos \theta_t$ (4.24)	式(4.20)を,式(4.19)を使って書き換えると $\frac{P_i}{Z_1} cos \theta_i + \frac{P_r}{Z_1'} cos \theta_r = \frac{P_t}{Z_2} cos \theta_t = \frac{P_l + P_r}{Z_2} cos \theta_t$ (4.24') 式(4.21)及び式(4.22) より Z_1 '= - Z_1 となり

頁	章	行	誤	正
				$\frac{P_i}{Z_1}\cos\theta_i - \frac{P_r}{Z_1}\cos\theta_r = \frac{P_t}{Z_2}\cos\theta_t = \frac{P_i + P_r}{Z_2}\cos\theta_t$
				(4.24) となる。
55	4.2.2	式(4.25)	$\frac{P_i}{Z_1}\cos\theta_i - \frac{P_r}{Z_r}\cos\theta_r = \frac{1}{Z_1}\cos\theta_t - \frac{1}{Z_1}\frac{P_r}{Z_i}\cos\theta_t$ $= \frac{1}{Z_2}\left[1 + \frac{P_r}{P_i}\right] \qquad (4.25)$	式(4.24)の両辺を P_i で割ると $\frac{1}{Z_1} \cos\theta_i - \frac{P_r}{P_i Z_1} \cos\theta_r = \frac{P_i + P_r}{P_i Z_2} \cos\theta_t \qquad (4.25')$ $\frac{1}{Z_1} \cos\theta_i - \frac{P_r}{P_i Z_1} \cos\theta_r = \frac{1}{Z_2} \cdot \left[1 + \frac{P_r}{P_i}\right] \cos\theta_t (4.25)$
55	4.2.2	式(4.26)		式(4.25)の左右を整理すると $\frac{1}{Z_1}\cos\theta_i - \frac{1}{Z_2}\cos\theta_t = \frac{1}{Z_1} \cdot \frac{P_r}{P_i}\cos\theta_r + \frac{1}{Z_2} \cdot \frac{P_r}{P_i}\cos\theta_t$ (4.26')
55	4.2.2	式(4.26)	$\frac{P_r}{P_i} \left[\frac{\cos \theta_i}{Z_2} + \frac{\cos \theta_r}{Z_1} \right] = \frac{\cos \theta_i}{Z_2} - \frac{\cos \theta_t}{Z_2}$ (4.26)	式(4.26')の両辺に $Z_1 \cdot Z_2 を乗じて \begin{pmatrix} P_r \\ P_i \end{pmatrix}$ で整理すると $\frac{P_r}{P_i} (Z_2 cos \theta_r + Z_1 cos \theta_t) = (Z_2 cos \theta_i - Z_1 cos \theta_t)$ (4.26)
55	4.2.2	式(4.27)	従って反射率 R _p は $\frac{P_r}{P_i} = \frac{Z_2 cos \theta_i - Z_1 cos \theta_t}{Z_1 cos \theta_t + Z_2 cos \theta_i}$ (4.27)	$ \theta_r = \theta_i \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

頁	章	行	誤	正
55	4.2.2	送 4.12	1 0.1 0.99 0.99 0.99 0.98 0.97 0.08 0.07 0.08 0.07 0.06 0.05 0.06 0.05 0.04 0.09 0.08 0.07 0.06 0.07 0.08 0.07 0.09 0.08 0.07 0.06 0.03 0.02 0.01 0.02 0.02 0.01 0.02 0.0	1 0.1 0.99 0.98 0.97 0.96 0.95 0.94 0.95 0.9
55	4.2.2	右下 9, 10, 16 行目	透過率	通過率
55	4.2.2	式(4.30)	$1 - \left[\frac{E_r}{E_i}\right]^2 = \frac{4Z_1Z_2\cos\theta_i}{[Z_1\cos\theta_t + Z_2\cos\theta_i]^2}$	$1 - \left[\frac{E_r}{E_i}\right] = \frac{4Z_1 Z_2 \cos\theta_i \cos\theta_t}{[Z_1 \cos\theta_t + Z_2 \cos\theta_i]^2}$
55	4.2.2	右下4行目	例えば超音波が液体から固体の場合は縦波から横波へのモード変換を同時に考慮する必要があり図4.13のようになる。	例えば超音波が液体から固体に入射する場合は、図 4.13 の ように横波へのモード変換を同時に考慮する必要がある。
56	4.2.2	式(4.33)	$\mathbf{N} = \frac{\rho_1 V_{i \not k \not k}}{\rho_2 V_{t \not k \not k}} \times \frac{\cos \theta_{t \not k \not k}}{\cos \theta_{i \not k \not k}}$	$\mathbf{N} = \frac{\rho_1 V_{i \not k \not t}}{\rho_2 V_{t \not k \not t}} \times \frac{\cos \theta_{t \not k \not t}}{\cos \theta_{r \not k \not t}}$
56	4.2.2	左上 12 行目	屈折縦波,横波の往復通過率は,式(4.34),式(4.35)となる。	屈折縦波,横波の <mark>音圧</mark> 往復通過率は,式(4.34),式(4.35)と なる。

頁	章	行	誤	正
56	4.2.2	図 4.15	0.45 0.4 0.35 0.25 0.2 0.15 0.1 0.05 0 10 20 30 40 50 60 <i>縱波入射角(度)</i>	0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.5 0 0 10 20 30 40 50 60 縦波入射角 (度)
56	4.2.2	左下9行目	次に超音波が固体から気体あるいは液体に斜め入射す る場合を考える。すなわち反射波に横波と縦波が同時 に存在する場合がある。	次に図4.16に示すように超音波が固体から気体あるいは液体に斜め入射する場合を考える。すなわち反射波に横波と縦波が同時に存在する場合がある。
56	4.2.2	式(4.36)	反射率 = $r_{縦} = \frac{M - \cos^2 2\theta_{t / \#} + N}{M + \cos^2 2\theta_{t / \#} + N}$	反射率 = $r_{縦} = \frac{M - \cos^2 2\theta_{r/\#} + N}{M + \cos^2 2\theta_{r/\#} + N}$
56	4.2.2	式(4.37)	反射率 = $r_{\text{横}} = \frac{M - \cos^2 2\theta_{t\text{横}} + N}{M + \cos^2 2\theta_{t\text{横}} + N}$	反射率 = $r_{$ $=$ $\frac{M - cos^2 2\theta_{r }}{M + cos^2 2\theta_{r }} - N$
57	4.2.2	式(4.39)	$N = \frac{\rho_1 V_{i \not k t}}{\rho_2 V_{r \not t t}} \times \frac{\cos \theta_{r \not t t}}{\cos \theta_{i \not k t}}$	$N = \frac{\rho_1 V_{i \text{ we}}}{\rho_2 V_{r \text{ we}}} \times \frac{\cos \theta_{r \text{ we}}}{\cos \theta_{t \text{ we}}}$
57	4.2.2	式(4.40)	$T_{\#} = \frac{4N\cos^2 2\theta_{t\#}}{\left(M + \cos^2 2\theta_{r\#} + N\right)^2}$	$T_{\text{ME}} = \frac{4N\cos^2\theta_{r\text{ME}}}{\left(M + \cos^2 2\theta_{r\text{ME}} + N\right)^2}$

頁	章	行	誤	正
57	4.2.2	左下7行目	鋼から空気に縦波が斜め入射する場合の計算結果は図 4.17のようになり、鋼から空気に横波が斜め入射する場 合の計算結果は図4.18のようになる。	空気と接する鋼界面に斜め入射する場合の音圧反射率を式 (4.36)より計算すると図4.17のようになり,鋼から空気に横 波が斜め入射する場合の音圧反射率を式(4.37)より計算す ると図4.18のようになる。
57	4.2.2	左下4行目	なお、これらの計算は、特定の角度θに全エネルギが入 射し、屈折・モード変換することを前提にしている。し かし、実際の探触子からの超音波入射波は、必ず広い入 射角にエネルギが分散する指向性を持つ点に留意する 必要が有る。	削除
61	4.2.3	式(4.68)	$\boldsymbol{r}_{13} = -\frac{\frac{Z_1}{Z_3} - 1}{\frac{Z_1}{Z_3} + 1} = \frac{Z_3 - Z_1}{Z_1 + Z'_3}$	$\boldsymbol{r}_{13} = -\frac{\frac{\boldsymbol{Z}_1}{Z_3} - 1}{\frac{\boldsymbol{Z}_1}{Z_3} + 1} = \frac{\boldsymbol{Z}_3 - \boldsymbol{Z}_1}{\boldsymbol{Z}_1 + \boldsymbol{Z}_3}$
61	4.2.3	式(4.70)	$ r = \frac{\left[\frac{Z_1}{Z_2} - \frac{Z_2}{Z_1}\right]}{\sqrt{\cot^2 k_2 l + \left[\frac{Z_1}{Z_2} + \frac{Z_2}{Z_1}\right]^2}}$	$ r = \frac{\left[\frac{Z_1}{Z_2} - \frac{Z_2}{Z_1}\right]}{\sqrt{4\cot^2 k_2 l + \left[\frac{Z_1}{Z_2} + \frac{Z_2}{Z_1}\right]^2}}$
61	4.2.3	式(4.71)	$ t = \frac{1}{\sqrt{4\cos^2 k_2 l + \frac{1}{4} \left[\frac{Z_1}{Z_2} + \frac{Z_2}{Z_1}\right]^2 \sin^2 k_2 l}}$	$ t = \frac{1}{\sqrt{\cos^2 k_2 l + \frac{1}{4} \left[\frac{Z_1}{Z_2} + \frac{Z_2}{Z_1}\right]^2 \sin^2 k_2 l}}$

頁	章	行	誤	E
65	4.3.1	⊠ 4.29 (d)	$ \begin{array}{c} 2 \\ 1.5 \\ 0 \\ 0.5 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ \chi/a \\ \end{array} $ $ \begin{array}{c} ka=40 \\ ka=40$	$ \begin{array}{c} 2 \\ 1.5 \\ 0 \\ 1.5 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
91	5.8.2	図 5.23	(d) 直線溝	(d) 横穴
103	6.3.1	右上 19,20 行 目	$x_0 = \frac{D^2}{(4\lambda)} = \frac{D^2 f}{(4C)} = 85.7 mm$	$x_0 = \frac{D^2}{(4\lambda)} = \frac{D^2 f}{(4C)} = 84.7 mm$
103	6.3.1	右上 23 行目	B_S : 16 dB	B_S : 18 dB
104	6.3.1	図 6.14	図中 n=20	図中 n=2.0